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ABSTRACT

Incorporating Knowledge Graphs (KG) into recommeder system as

side information has attracted considerable attention. Recently, the

technical trend of Knowledge-aware Recommendation (KGR) is to

develop end-to-endmodels based on graph neural networks (GNNs).

However, the extremely sparse user-item interactions significantly

degrade the performance of the GNN-based models, from the fol-

lowing aspects: 1) the sparse interaction, itself, means inadequate

supervision signals and limits the supervised GNN-based models;

2) the combination of sparse interactions (CF part) and redundant

KG facts (KG part) further results in an unbalanced information

utilization. Besides, the GNN paradigm aggregates local neighbors

for node representation learning, while ignoring the non-local KG

facts and making the knowledge extraction insufficient. Inspired

by the recent success of contrastive learning in mining supervised

signals from data itself, in this paper, we focus on exploring con-

trastive learning in KGR and propose a novel multi-level interactive

contrastive learning mechanism, to alleviate the aforementioned

challenges. Different from traditional contrastive learning methods

which contrast nodes of two generated graph views, interactive con-

trastive mechanism conducts layer-wise self-supervised learning
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by contrasting layers of different parts within graphs, which is also

an "interaction" action. Specifically, we first construct local and non-

local graphs for user/item in KG, exploring more KG facts for KGR.

Then an intra-graph level interactive contrastive learning is per-

formed within each local/non-local graph, which contrasts layers

of the CF and KG parts, for more consistent information leveraging.

Besides, an inter-graph level interactive contrastive learning is per-

formed between the local and non-local graphs, for sufficiently and

coherently extracting non-local KG signals. Extensive experiments

conducted on three benchmark datasets show the superior perfor-

mance of our proposed method over the state-of-the-arts. The im-

plementations are available at: https://github.com/CCIIPLab/KGIC.
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1 INTRODUCTION

Recommender systems (RS) aim to alleviate the information explo-

sion, proposing to recommend a small set of items to meet users’

personalized interests. As an effective solution, collaborative filter-

ing [12, 18, 24, 43, 53] presumes that behaviorally similar users have
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Figure 1: A toy example of multi-level contrastive mech-

anism. (a) Intra-graph level interactive contrastive mecha-

nism; (b) Inter-graph level interactive contrastivemechanism

(Only taking Layer=1 as the anchor here for clarity).

a similar preference on items and achieves great success. However,

they severely suffer from the cold-start problem, due to treating

each interaction as an independent instance while neglecting their

relations. A commonly-adopted solution is to integrate side infor-

mation with collaborative filtering models, such as a knowledge

graph (KG) [23, 55], which contains rich facts and connections

about items, to learn high-quality user and item representations for

recommendation (aka. knowledge-aware recommendation, KGR).

Indeed, there already exists much research effort [33, 50, 51] for

KGR, targeting to sufficiently and coherently leverage the graph

information of CF (i.e., user-item interactions [22]) and KG (i.e., item-

entity affiliations). Earlier studies [14, 33, 50] explore CF and KG

independently, which exploits KG to enhance item representation

in CF. They employ knowledge graph embedding (KGE) models (e.g.,

TransE [2], TransH [44]) to pre-train entity embeddings and treat

them as prior information. However, these methods fall short in dis-

tilling sufficient knowledge signals from KG, since they treat each

item-entity relation independently. Hence, some follow-on studies

[13, 28, 41] focus on extracting more sufficient KG signals to enrich

CF, via capturing the long-range KG connectivity, such as selecting

prominent paths over KG [29] or representing the interactions with

multi-hop paths from users to items [13, 41]. Nevertheless, most of

them heavily rely on manually designed meta-paths, thus are hard

to optimize in reality. More recent works [27, 36, 38, 39] further

unify CF and KG as a heterogeneous graph, with an informative ag-

gregation paradigm (i.e.,Graph Neural Networks, GNNs) to perform

graph representation learning. Due to the powerful capability of

GNNs in effectively generating local permutation-invariant aggre-

gation on the neighbors of a node, these methods achieve promising

performance and become the mainstream tendency in KGR.

Despite effectiveness, existing GNN-based methods still fall short

in achieving the above core goal in the following three aspects:

• Sparse Supervised Signals. Since established in a supervised

manner, existing GNN-based methods rely on the observed user-

item interactions as supervision signals to perform graph repre-

sentation learning on the unified heterogeneous graph. However,

the user-item interactions are actually extremely sparse in real

scenarios [1, 45], which makes it insufficient to achieve satisfac-

tory performance and even results in terrible side effects, e.g.,

degeneration problem [7] (i.e., degenerating node embeddings

distribution into a narrow cone, even leading to the indiscrimi-

nation of generated node representations).

• Unbalanced Information Utilization.When the sparse user-

item interactions meet redundant knowledge facts, there occurs

an unbalanced heterogeneous structure in KGR, which results

in an unbalanced information utilization problem. A commonly

approved fact is that, it’s the CF signals that determine the user’s

preferences, since they are composed of user’s historical interac-

tions. With the unbalanced information utilization, the noisy KG

information, however, gets emphasized more in final user/item

modeling, which makes the crucial CF signals less stressed and

further results in suboptimal representation learning.

• Insufficient Knowledge Extraction. Although there are redun-

dant KG facts, extracting informative and helpful knowledge is

actually far from sufficient in previous GNN-based models, due to

the local aggregation feature of GNN. The GNN-based methods

usually learn item representations by aggregating neighboring

entities on their local KG structures (i.e., neighboring areas of the

item itself), which ignores the non-local KG facts (i.e., neighbor-

ing areas of similar items) and thus results in inadequate knowl-

edge extraction. Nevertheless, simply aggregating the non-local

KG facts may introduce more irrelevant noise, further resulting

in an unexpected performance decrease.

Inspired by recent success in contrastive learning, one of the clas-

sical Self-Supervised Learning (SSL) methods, we naturally propose

to leverage the superiority of SSL to alleviate the first problem of

Sparse Supervised Signals. A straightforward idea is that we could

augment (or corrupt) the input user-item-entity graph as a graph

view, and contrast the nodes in it with the original one, following

the traditional contrastive paradigm analogous to [5, 11, 17]. How-

ever, such a paradigm performs contrastive learning in a relatively

independent manner, which only contrasts the same part (CF or KG

part) of different graph views, hence ignores the inner interactions

of different parts within a graph. That is, the improvements of CF

and KG representation learning are mutually isolated, and the im-

pact of CF part in final user/item modeling is still limited. Hence

with the traditional contrastive mechanism, the above second and

third problems are still far from resolution or alleviation. As a re-

sult, it is a necessity to endow the contrastive learning paradigm

with the capability of effective information interaction between CF

and KG parts, so as to coherently exploit information of each part

without reliance on extra explicit labels. This motivates us to de-

sign an interactive graph contrastive mechanism tailored for KGR

task, which is required to conclude the following aspects so as to

address the above limitations: 1) contrasting the CF and KG parts

to balance their impact on representation learning, as shown in

Figure 1 (a); 2) contrasting the local and non-local graphs in KG to

extract informative non-local KG facts, as shown in Figure 1 (b).

In this paper, we develop a novel model, Knowledge-aware Rec-

ommender System with Multi-level Interactive Contrastive Learn-

ing (KGIC), to solve the aforementioned limitations and challenges.
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Conceptually, KGIC focuses on exploring a proper in-graph con-

trastive learning mechanism for KGR, aiming to unify the two

crucial but relatively independent parts (i.e., CF and KG) in a self-

supervised manner. In particular, we first perform the interactive

graph contrastive learning in intra-graph level, which contrasts

the CF signals with the KG information in each local/non-local

graph of user/item, aiming to increase the information consistency

between CF and KG parts. Then an inter-graph level interactive

graph contrastive learning is conducted, which contrasts the local

KG facts with non-local ones, for integrating more KG signals and

denoising the non-local KG information. Empirically, KGIC outper-

forms the state-of-the-art models on three benchmark datasets.

Our contributions of this work can be summarized as follows:

• General Aspects: We emphasize the importance of incorpo-

rating self-supervised learning to unify CF and KG information

for knowledge-aware recommendation, which takes layer self-

discrimination as a self-supervised task to offer auxiliary signals

for coherent graph representation learning.

• Novel Methodologies: We propose a novel model KGIC, which

designs amulti-level interactive contrastivemechanism for knowledge-

aware recommendation. KGIC combines multi-order CF with KG

to construct local and non-local graphs for fully exploring ex-

ternal knowledge. KGIC then performs intra-graph level and

inter-graph level interactive contrastive learning among local

and non-local graphs, for a sufficient and coherent information

utilization in CF and KG.

• Multifaceted Experiments:We conduct extensive experiments

on three benchmark datasets. The results demonstrate the ad-

vantages of our KGIC in better representation learning, which

shows the effectiveness of our multi-level interactive contrastive

learning for KGR.

2 RELATEDWORK

2.1 Knowledge-aware Recommendation

2.1.1 Embedding-based methods. Embedding-based methods [4,

14, 31, 33, 35, 50, 51] pre-train the KG entity embeddings with

knowledge graph embeddings methods (KGE) [2, 19, 44], for en-

riching item representations. CKE [50] combines CF module with

structural, textual, and visual knowledge embeddings of items in a

unified Bayesian framework. KTUP [4] jointly model user prefer-

ence and perform KG completion with the TransH [44] method on

user-item interactions and KG triplets. RippleNet [32] propagates

users’ historical clicked items along links in KG, exploring more

KG facts to reveal the users’ potential interests. Embedding-based

methods show high flexibility in utilizing KG, but the utilized KGE

focus more on modeling rigorous semantic relatedness, which is

more suitable for link prediction rather than recommendation.

2.1.2 Path-based methods. Path-based methods [13, 28, 41, 48,

49, 52] explore various patterns of connections among items in

KG to provide additional guidance for the recommendation. PER

[49] and meta-graph based recommendation [13] extract the meta-

path/meta-graph latent features and exploit the connectivity be-

tween users and items along different types of relation paths/graphs.

KPRN [41] further automatically extracts paths between users and

items, modeling these paths with RNNs. Path-based methods mostly

involve the design of meta-paths for generating meaningful con-

nectivity patterns, which requires specific domain knowledge and

labor-intensive human efforts for accurate path construction.

2.1.3 GNN-based methods. GNN-based methods [13, 41, 48, 49, 52]

are founded on the information aggregation mechanism of graph

neural networks (GNNs) [9, 16, 46]. Typically it integratesmulti-hop

neighbors into node representations to capture node feature and

graph structure, modeling long-range connectivity. KGCN [36] and

KGNN-LS [34] firstly utilize GNN on KG to obtain item embeddings

by aggregating items’ neighborhood information iteratively. Later,

KGAT [38] combines the user-item graph with the KG as a unified

heterogeneous graph, then utilizes GNN to recursively perform

aggregation on it. But CKAN [42] separately propagates collabora-

tive signals and knowledge signals on the user-item graph and KG

to stress the importance of CF signals. More recently, KGIN [39]

models user-item interactions at an intent level, which reveals user

intents behind the KG interactions and performs GNN on the user-

intent-item-entity graph. And CG-KGR [6] exploits the pre-trained

collaborative signals to guide the aggregation on KG, for sufficient

knowledge extraction. However, all these approaches follow the

supervised learning paradigm, hence suffering from the original

sparse interactions. Moreover, most of them have an unbalanced

utilization of user-item-entity graph, overstressing the importance

of KG and ignoring the crucial effect of CF. Besides, insufficient

knowledge extraction also exists for the local aggregation feature

of GNN. In contrast, our work explores self-supervised learning in

KGR, to overcome the limitations brought by the spare interactions

and achieve sufficient knowledge extraction.

2.2 Contrastive Learning

Contrastive learning methods [30, 40, 45] learn node representa-

tions by contrasting positive pairs against negative pairs. DGI [30]

first adopts Infomax [21] in graph representation learning, and

contrasts the local node embeddings with global graph embeddings.

Then GMI [25] proposes to contrast the center node with its local

neighbors on both node features and topological structure. Similarly,

MVGRL [10] learns node-level and graph-level node representations

from first-order neighbors and a graph diffusion, and contrasts en-

coded embeddings between two graph views. More recently, HeCo

[40] proposes to learn node representations from network schema

view and meta-path view, and performs contrastive learning be-

tween them. As for contrastive learning in the traditional CF-based

recommendation domain, SGL [45] generates two graph views by

corrupting the user-item interactions, and performs contrastive

learning between them. And NCL [20] captures potential node

(structural and semantic) relatedness into contrastive learning for

a neighbor-enhanced contrasting. However, little effort has been

made to investigate the great potential of contrastive learning on

knowledge-aware recommendation.

3 PROBLEM FORMULATION

In this section, we first formulate structural data of CF and KG parts,

i.e., user-item interactions and knowledge graph, then present the

problem statement of knowledge-aware recommendation.

Interaction Data. In a typical recommendation scenario, letU =
{𝑢1, 𝑢2, . . . , 𝑢𝑀 } be a set of𝑀 users andV = {𝑣1, 𝑣2, . . . , 𝑣𝑁 } a set
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of 𝑁 items. Let Y ∈ R𝑀×𝑁 be the user-item interaction matrix,

where 𝑦𝑢𝑣 = 1 indicates that user 𝑢 engaged with item 𝑣 , such as

behaviors like clicking or purchasing; otherwise 𝑦𝑢𝑣 = 0.

Knowledge Graph. A KG stores luxuriant real-world facts asso-

ciated with items, e.g., item attributes, or external commonsense

knowledge, in the form of a heterogeneous graph [28]. Let G =
{(ℎ, 𝑟, 𝑡) | ℎ, 𝑡 ∈ E, 𝑟 ∈ R} be the knowledge graph, where ℎ, 𝑟 ,
𝑡 are on behalf of head, relation, tail of a knowledge triple corre-

spondingly; E and R refer to the sets of entities and relations in G.

In many recommendation scenarios, an item 𝑣 ∈ V corresponds to

one entity 𝑒 ∈ E. So we establish a set of item-entity alignments

A = {(𝑣, 𝑒) |𝑣 ∈ V, 𝑒 ∈ E}, where (𝑣, 𝑒) indicates that item 𝑣 can
be aligned with an entity 𝑒 in the KG. With the alignments be-

tween items and KG entities, KG is able to profile items and offer

complementary information to the interaction data.

Problem Statement. Given the user-item interaction matrix Y and

the knowledge graph G, knowledge-aware recommendation task

aims to learn a function that can predict how likely a user would

adopt an item.

4 METHODOLOGY

We now present the proposed Knowledge-aware Recommender

System with Multi-level Interactive Contrastive Learning (KGIC).

KGIC aims at unifying the CF and KG parts with an interactive con-

trastive mechanism for coherent information utilization and hence

improving the user/item representation learning. Figure 2 displays

the working flow of KGIC, which mainly consists of three key com-

ponents: 1) Graph Constructing and Encoding. It first constructs

local and non-local graphs for user/item by combining different CF

signals with KG facts, then encodes each layer with a simple GNN

encoder in all the graphs. 2) Intra-graph Interactive Contrastive

Learning. It performs interactive contrastive Learning within local

and non-local graphs, for unifying the CF and KG information, and

further having a consistent and sufficient representation learning.

3) Inter-graph Interactive Contrastive Learning. It performs inter-

active contrastive Learning between local and non-local graphs,

aiming to extract more informative KG signals. We next present

the three components in detail.

4.1 Graph Constructing and Encoding

Different from previous KG-aware recommendation methods that

only integrate KG entities of local neighboring areas into user/item

representation learning, we propose to incorporate the non-local

KG information which could be acquired from neighboring KG

entities of similar items (i.e., co-occurrence items in CF), aiming

to fully explore the external facts in KG. We first construct local

and non-local graphs (i.e., the local and non-local sub-KGs) for

user/item by combining corresponding CF signals with KG. Then

an attentive embedding mechanism is adopted for layer encoding

in each graph.

4.1.1 Local Graph Construction. Local graph consists of first-order

CF (i.e., the user’s interacted items or the item itself) and related

KG facts for user/item. Firstly, first-order CF signals for user/item

are extracted from the user-item interactions 𝑌 . Then through the

item-entity alignments A = {(𝑣, 𝑒) |𝑣 ∈ V, 𝑒 ∈ E}, the items of

first-order CF signals are aligned with KG and the initial entities in

KG are acquired as follows:

E0
𝑢,𝐿 = {𝑒 | (𝑣, 𝑒) ∈ A, and 𝑣 ∈ {𝑣 | 𝑦𝑢𝑣 = 1}} ,

E0
𝑣,𝐿 = {𝑒 | (𝑣, 𝑒) ∈ A},

(1)

where E0
𝑢,𝐿 and E0

𝑣,𝐿 represents the initial entity sets of KG in local

graphs, for the user and the item respectively. After that, more

layers’ related KG facts are acquired through a natural propagation

in KG (i.e., propagating along links in KG). And by doing so, the local

graphs for user/item are constructed. The triples in local graphs

are obtained as follows:

S𝑙
𝑜,𝐿 =

{
(ℎ, 𝑟, 𝑡) | (ℎ, 𝑟, 𝑡) ∈ G and ℎ ∈ E𝑙−1

𝑜,𝐿

}
, 𝑙 = 1, . . . , 𝐿, (2)

where the symbol 𝑜 is a uniform placeholder which means 𝑢 or 𝑣 ,

S𝑙
𝑢,𝐿 andS𝑙

𝑣,𝐿 represents the triple set in the local graph’s 𝑙−th layer

for user and item, which is composed of (𝑙 −1)−th layer head entity,

relation and 𝑙−th layer tail entity. In this way, we obtain a 𝐿−layer
local graph for user/item, which contains user-item-entity and item-

entity heterogeneous structure for user and item respectively.

4.1.2 Non-Local Graph Construction. Non-local graph contains

high-order CF signals (i.e., item-user-item co-occurrence items in

CF) and more external KG facts for user/item. Similarly, the non-

local graph is constructed by aligning high-order items of CF with

KG and KG propagating. Firstly, the high-order items for user/item

are acquired through propagating in user-item interactions, as fol-

lows:

V𝑝 =
{
𝑣𝑝 | 𝑢 ∈ Usim , and 𝑦𝑢𝑣𝑝 = 1

}
,

Usim =
{
𝑢sim | 𝑣 ∈ {𝑣 | 𝑦𝑢𝑣 = 1} and 𝑦𝑢sim 𝑣 = 1

}
,

V𝑢 =
{
𝑣𝑢 | 𝑢 ∈ {𝑢 | 𝑦𝑢𝑣 = 1} and 𝑦𝑢𝑣𝑢 = 1

}
,

(3)

whereV𝑝 andUsim represent high-order items and similar users

of the user, and V𝑢 is the high-order items of the item. Further the

aligned initial entities E0
𝑢,𝑁 and E0

𝑣,𝑁 in KG are acquired as follows:

E0
𝑢,𝑁 =

{
𝑒 |

(
𝑣𝑝 , 𝑒

)
∈ A, and 𝑣𝑝 ∈ V𝑝

}
,

E0
𝑣,𝑁 = {𝑒 | (𝑣𝑢 , 𝑒) ∈ A, and 𝑣𝑢 ∈ V𝑢 } .

(4)

Then by propagating these initial entities in KG, the non-local

graph for user/item is constructed, whose triples are formed as

follows:

S𝑙
𝑜,𝑁 =

{
(ℎ, 𝑟, 𝑡) | (ℎ, 𝑟, 𝑡) ∈ Gandℎ ∈ E𝑙−1

𝑜,𝑁

}
, 𝑙 = 1, . . . , 𝐿. (5)

4.1.3 Graph Encoding. Obtaining local and non-local graphs of

user/item, it’s indispensable to encode each layer information into

an embedding for learning a comprehensive representation. In-

spired by previous KG-aware recommendation works, an attentive

embedding mechanism is adopted here, which reveals the different

meanings of the tail entities with different contexts and generates

different attentive weights. Considering (ℎ, 𝑟, 𝑡) the 𝑖-th triple of

the 𝑙-th layer triple set, we can get the representation of the 𝑙-th
layer as follows:

E𝑙𝑜,𝐷 =
𝑚∑
𝑖=1

𝜋
(
𝑒ℎ𝑖 , 𝑟𝑖

)
𝑒𝑡𝑖 , (6)

where the symbol 𝐷 is a uniform placeholder which means 𝐿 or 𝑁 ,

E𝑙𝑜,𝐷 represents 𝑙-th layer’s embedding of 𝑢 or 𝑣 in local/non-local

graph. And𝑚 is the number of triples in the 𝑙-th layer, 𝑒ℎ𝑖 , 𝑟𝑖 and
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Figure 2: Illustration of the proposed KGIC model. The left subfigure shows model framework of KGIC; and the right subfigure

presents the details of Multi-level Interactive Contrastive Learning. Best viewed in color.

𝑒𝑡𝑖 are the embeddings of head entity, relation and the tail entity of

the 𝑖-th triple. The weights 𝜋 (𝑒ℎ𝑖 , 𝑟𝑖 ) are acquired by the attentive

mechanism which can be described as follows:

𝜋
(
𝑒ℎ𝑖 , 𝑟𝑖

)
= 𝜎

(
𝑊1

[
𝜎
(
𝑊0

(
𝑒ℎ𝑖 | |𝑟𝑖

)
+ 𝑏0

)]
+ 𝑏1

)
,

𝜋
(
eℎ𝑖 , r𝑖

)
=

exp
(
𝜋
(
eℎ𝑖 , r𝑖

))

∑
(ℎ′,𝑟 ′,𝑡 ′) ∈S𝑙

𝑜,𝐷
exp

(
𝜋
(
eℎ

′

𝑖 , r
′
𝑖

)) ,
(7)

where | | is the concatenation operation,𝑊∗ ∈ R2𝑑×𝑑 and 𝑏∗ ∈ R𝑑

are the trainable weight matrices and biases. Hence we successfully

encode each layer of local and non-local graphs into embeddings.

4.2 Intra-graph Interactive Contrastive
Learning

Based on the constructed local and non-local graphs of user/item,

we move on to encourage a balanced information utilization in

these graphs. Since the local and non-local graphs have a relatively

unbalanced heterogeneous structure, which is composed of sparse

user-item interactions and redundant KG connections, thus the cru-

cial CF signals tend to have less impact on representation learning.

The intra-graph interactive contrastive learning is hence proposed

to make coherent use of CF and KG, by performing interactions

between CF and KG information with contrastive learning.

Specifically, the intra-graph interactive contrastive learning re-

gards the CF part (i.e., the initial entities in Equation (1) ) as the

anchor, which is located in center layer of the local/non-local graph.

The knowledge information involved in aggregation for learning

user/item representation forms the positive pairs, and the other

KG entities (i.e., the unemployed higher layers in graphs) form the

negative pairs. With the defined positive and negative pairs, we

have the following contrastive loss for the user:

L𝑈
𝐼𝑛𝑡𝑟𝑎 =

∑
𝑢∈U

− log

∑
𝑘∈𝐿

𝑒

((
E
(0)
𝑢,𝐿

·E
(𝑘 )
𝑢,𝐿

/𝜏
))

∑
𝑘∈𝐿

𝑒

((
E
(0)
𝑢,𝐿 ·E

(𝑘 )
𝑢,𝐿/𝜏

))

︸������������������︷︷������������������︸
positive pair

+

∑
𝑘′>𝐿

𝑒

((
E
(0)
𝑢,𝐿 ·E

(𝑘′)
𝑢,𝐿 /𝜏

))

︸��������������������︷︷��������������������︸
intra-graph negative pair

+
∑

𝑢∈U
− log

∑
𝑘∈𝐿

𝑒

((
E
(0)
𝑢,𝑁

·E
(𝑘 )
𝑢,𝑁

/𝜏
))

∑
𝑘∈𝐿

𝑒

((
E
(0)
𝑢,𝑁 ·E

(𝑘 )
𝑢,𝑁 /𝜏

))

︸�������������������︷︷�������������������︸
positive pair

+

∑
𝑘′>𝐿

𝑒

((
E
(0)
𝑢,𝑁 ·E

(𝑘′)
𝑢,𝑁 /𝜏

))

︸��������������������︷︷��������������������︸
intra-graph negative pair

,

(8)

where 𝜏 denotes a temperature parameter in softmax. In a similar

way, the intra-graph contrastive loss of the item can be obtained as

L𝐼
𝐼𝑛𝑡𝑟𝑎 . And the complete Intra-graph interactive contrastive Loss

is the sum of the above two losses:

L𝐼𝑛𝑡𝑟𝑎 = L𝑈
𝐼𝑛𝑡𝑟𝑎 + L𝐼

𝐼𝑛𝑡𝑟𝑎 . (9)

In this way, CF and KG signals successfully supervise each other

to have a more coherent and sufficient representation learning.

4.3 Inter-graph Interactive Contrastive
Learning

Although intra-graph interactive contrastive learning has achieved

coherent information utilization in each single graph, it’s still a

challenge to integrate the local and non-local information together

for that the non-local one is noisier. Since the non-local graph is

composed of high-order CF signals and its corresponding KG facts,

more external useful external facts along with noisy information

are included. Hence the inter-graph interactive contrastive learn-

ing is proposed, to extract informative non-local information by

contrasting the non-local graph with the cleaner local graph and

collaboratively supervising each other.

To be more specific, the inter-graph interactive contrastive learn-

ing treats any layers of the local graph as the anchor, and the same
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layer in the non-local graph forms the positive pair, and the other

layers in the non-local graph are naturally regarded as the negative

pairs. Similar to intra-graph interactive contrastive mechanism, we

have the following contrastive loss for the user:

L𝑈
𝐼𝑛𝑡𝑒𝑟 =

∑
𝑢∈U

∑
𝑘∈𝐿

− log 𝑒

((
E
(𝑘 )
𝑢,𝐿

·E
(𝑘 )
𝑢,𝑁

/𝜏
))

𝑒

((
E
(𝑘 )
𝑢,𝐿 ·E

(𝑘 )
𝑢,𝑁 /𝜏

))

︸�������������︷︷�������������︸
positive pair

+

∑
𝑘′≠𝑘

𝑒

((
E
(𝑘 )
𝑢,𝐿 ·E

(𝑘′)
𝑢,𝑁 /𝜏

))

︸�������������������︷︷�������������������︸
inter-graph negative pair

.

(10)

Similarly, we could obtain the inter-graph contrastive loss of the

item L𝐼
𝐼𝑛𝑡𝑒𝑟 . Then the complete inter-graph contrastive loss is the

sum of the user and item contrastive loss:

L𝐼𝑛𝑡𝑒𝑟 = L𝑈
𝐼𝑛𝑡𝑒𝑟 + L𝐼

𝐼𝑛𝑡𝑒𝑟 . (11)

4.4 Model Prediction

Having updated all the layers’ embeddings, we obtain every layer’s

embedding for user’s local and non-local graph, item’s local and

non-local graph. Every layer’s embedding expresses a part of user/item

representation and stresses the influence of different layers and

components. By concatenating these representation vectors of each

layer, final user/item embedding is concluded for predicting their

matching score through inner product, as follows:

e𝑢 = E0𝑢,𝐿 ‖ . . . ‖E
𝐿
𝑢,𝐿 ‖E

0
𝑢,𝑁 ‖ . . . ‖E𝐿𝑢,𝑁 ,

e𝑖 = E0𝑖,𝐿 ‖ . . . ‖E
𝐿
𝑖,𝐿 ‖E

0
𝑖,𝑁 ‖ . . . ‖E𝐿𝑖,𝑁 ,

ŷ(𝑢, 𝑖) = e�𝑢 e𝑖 .

(12)

4.5 Multi-task Training

To combine the recommendation task with the self-supervised task,

we treat the proposed two contrastive learning losses as supplemen-

tary. Hence a multi-task learning strategy is leveraged to jointly

train the KG-aware recommendation loss and the proposed con-

trastive loss. For the KG-aware recommendation task, a pairwise

BPR loss [26] is adopted to reconstruct the historical data, which

encourages the prediction scores of a user’s historical items to be

higher than the unobserved items.

LBPR =
∑

(𝑢,𝑖, 𝑗) ∈𝑂

− ln𝜎
(
ŷ𝑢𝑖 − ŷ𝑢 𝑗

)
, (13)

where𝑶 =
{
(𝑢, 𝑖, 𝑗) | (𝑢, 𝑖) ∈ 𝑶+, (𝑢, 𝑗) ∈ 𝑶−

}
is the training dataset

consisting of the observed interactions 𝑶+ and unobserved coun-

terparts 𝑶−; 𝜎 is the sigmoid function. By combining the intra- and

inter-graph interactive contrastive loss with BPR loss, we minimize

the following objective function to learn the model parameter:

L𝐾𝐺𝐼𝐶 = LBPR + 𝜆1(𝛼L𝐼𝑛𝑡𝑟𝑎 + L𝐼𝑛𝑡𝑒𝑟 ) + 𝜆2‖Θ‖22, (14)

where Θ is the model parameter set, 𝛼 is the hyperparameter to

balance the weight of the intra- and inter-graph contrastive losses,

𝜆1 and 𝜆2 are two hyperparameters to control the contrastive loss

and 𝐿2 regularization term, respectively.

5 EXPERIMENT

Extensive experiments have been done on three public datasets, for

answering the following research questions:

Book-Crossing MovieLens-1M Last.FM

User-item

Interaction

# users 17,860 6,036 1,872

# items 14,967 2,445 3,846

# interactions 139,746 753,772 42,346

Knowledge

Graph

# entities 77,903 182,011 9,366

# relations 25 12 60

# triplets 151,500 1,241,996 15,518

Hyper-

parameter

Settings

# 𝜂 4 × 10−3 4 × 10−3 4 × 10−3

# 𝜆1 1 × 10−6 1 × 10−7 1 × 10−6

# 𝜆2 1 × 10−4 1 × 10−5 1 × 10−4

Table 1: Statistics and hyper-parameter settings for the three

datasets. (𝜂: learning rate, 𝜆1: constrastive loss weight, 𝜆2: L2
regularizer weight.)

• RQ1: How does KGIC perform, compared with the state-of-the-

art models?

• RQ2: How do the main components (e.g., intra- and inter-graph

interactive contrastive learning) affect KGIC performance?

• RQ3: How do different hyper-parameter settings (e.g., model

depth, coefficient 𝛼 , temperature 𝜏) affect KGIC?
• RQ4: Is the self-supervised task really improving the representa-

tion learning quality?

5.1 Experiment Settings

5.1.1 Dataset Description. Three publicly available datasets are

used to evaluate the effectiveness of KGIC: Book-Crossing,MovieLens-

1M, and Last.FM, which vary in size and sparsity, making our exper-

iments more convincing. The basic statistics of the three datasets

are presented in Table 1.

• Book-Crossing1: It consists of trenchant ratings (ranging from
0 to 10) about various books from the book-crossing community.

• MovieLens-1M2: It contains approximately 1 million explicit rat-

ings (ranging from 1 to 5) for movie recommendations.

• Last.FM3: It is collected from Last.FM online music systems,

containing listening history with around 2 thousand users.

Note that we follow RippleNet [32] to transform the explicit

feedback in three datasets into the implicit one where 1 indicates

the positive samples. For negative samples, we randomly sample

unobserved items with the same size as positive ones for each user.

As for the sub-KG construction, we use Microsoft Satori4, closely

following RippleNet [32] and KGCN[36]. Each sub-KG follows the

triple format and is a subset of the whole KG with a confidence

level over 0.9. Given the sub-KG, we gather Satori IDs of all valid

movies/books/musicians through matching their names with the

tail of triples. Then we match the item IDs with the head of all

triples and select all well-matched triples from the sub-KG.

5.1.2 EvaluationMetrics. To comprehensively evaluate ourmethod,

we conduct the evaluation in two experimental scenarios: (1) In

click-through rate (CTR) prediction, two widely used metrics [32,

36] 𝐴𝑈𝐶 and 𝐹1 are adopted here. (2) In top-𝐾 recommendation,

1http://www2.informatik.uni-freiburg.de/~cziegler/BX/
2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/hetrec-2011/
4https://searchengineland.com/library/bing/bing-satori
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we choose Recall@𝐾 to evaluate the recommended sets, where 𝐾
is set to 5, 10, 20, 50, and 100 for consistency.

5.1.3 Baselines. To demonstrate the effectiveness of our proposed

KGIC, we compare KGIC with the state-of-the-art methods, cover-

ing: CF-based methods (BPRMF), embedding-based methoda (CKE,

RippleNet), path-based methoda (PER), and GNN-based methods

(KGCN, KGNN-LS, KGAT, CKAN, KGIN, CG-KGR) as follows:

• BPRMF [26]: It’s a typical CF-based method that uses pairwise

matrix factorization for implicit feedback optimized by BPR loss.

• CKE [50]: It’s an embedding-based method that combines struc-

tural, textual, and visual knowledge in one framework.

• RippleNet [32]: It’s a classical embedding-based method which

propagates users’ preferences on the KG.

• PER [49]: It’s a path-based method which extracts meta-path

features to represent the connectivity between users and items.

• KGCN [36]: It’s a GNN-based method which iteratively integrates

neighboring information to enrich item embeddings.

• KGNN-LS [34]: It is a GNN-based model which enriches item

embeddings with GNN and label smoothness regularization.

• KGAT [38]: It’s a GNN-based method which iteratively integrates

neighbors on user-item-entity graph with an attention mecha-

nism to get user/item representations.

• CKAN [42]: It’s a GNN-based method which independently propa-

gates collaborative and knowledge signals on CF and KG parts.

• KGIN [39]: It’s a state-of-the-art GNN-based method, which disen-

tangles user-item interactions at the granularity of user intents,

and performs GNN on the user-intent-item-entity graph.

• CG-KGR [6]: It’s the latest GNN-based method which fuses the

collaborative signals into knowledge aggregation with GNN.

5.1.4 Parameter Settings. We implement our KGIC and all base-

lines in Pytorch and carefully tune the key parameters. We fix the

embedding size to 64 in all models for a fair comparison. The default

Xavier method [8] is adopted to initialize the model parameters.

Besides, we utilize Adam [15] optimizer and set the batch size to

2048. The local and non-local triple set size are limited to 40 and

128 respectively. Other hyper-parameter settings are provided in

Table 1. The best settings for hyperparameters in all methods are

researched by either empirical study or the original papers.

5.2 Performance Comparison (RQ1)

The empirical results of all methods in two scenarios are reported in

Table 2 and Figure 3, respectively. The improvements and statistical

significance test are performed between KGIC and the strongest

baselines (highlighted with underline). By analyzing the perfor-

mance comparison, we have the following observations:

• Our proposed KGIC achieves the best results. KGIC yields

the best performance across three datasets in terms of all mea-

sures. More specifically, KGIC improves w.r.t. 𝐴𝑈𝐶 by 2.51%,

0.62%, and 1.06% over the strongest baselines in Book-Crossing,

MovieLens-1M, and Last.FM datasets respectively. In top-𝐾 rec-

ommendation scenario, KGIC also performs best w.r.t. 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾
(k = 5, 10, 20, 50, 100) in all the cases. We attribute such improve-

ments to the following aspects: (1) By contrasting the CF with

KG signals in local/non-local graphs, the intra-graph level inter-

active contrastive learning performs interactions between two

parts and supervises each other to improve the representation

learning. (2) Through contrasting the local and non-local graphs

of user/item, inter-graph level interactive contrastive learning

sufficiently incorporates the non-local KG facts and learns dis-

criminative representations from the two kinds of graphs.

• Most KG-aware models achieve better performance. We

can observe that models with KG mostly perform better than

conventional CF methods. Comparing CKE with BPRMF, simply

incorporating KG embeddings into MF boosts the model perfor-

mance. This confirms the importance of bringing in KG.

• Simply integrating KG is not a guarantee of performance

improvement. Traditional CF-based methods BPRMF works

slightly better than embedding-based method CKE and path-

based method PER in some scenarios. This phenomenon reveals

that the overly unbalanced utilization of KG would unexpectedly

degrade the model performance, which stresses the importance

of making sufficient and coherent use of KG.

• Extracting more informative KG facts boosts the model

performance GNN-based methods have a better performance

than embedding-based and path-based ones in most cases, which

indicates the effectiveness of extracting long-range KG facts. This

fact convinces that exploring more informative KG facts highly

related to user/item would facilitate the representation, which

motivates us to explore more knowledge entities ignoring the

limitation of local areas.

5.3 Ablation Studies (RQ2)

Towards examining the contributions of main components in our

model, we compare the KGICwith the following variants: (1)𝐾𝐺𝐼𝐶𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 :

In this variant, we disable the intra-graph interactive contrastive

learning module. (2) 𝐾𝐺𝐼𝐶𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 : This variant removes inter-

graph interactive contrastive learningmodule. (3)𝐾𝐺𝐼𝐶𝑤/𝑜 𝑁𝑜𝑛−𝑙𝑜𝑐𝑎𝑙
This variant removes non-local graphs, hence the intra-graph con-

strastive loss of non-local graph and inter-graph contrastive loss

are both disabled. The experimental results are reported in Figure 4,

from which we could summarize the following observations:

• Compared with KGIC, 𝐾𝐺𝐼𝐶𝑤/𝑜 𝑖𝑛𝑡𝑟𝑎 and 𝐾𝐺𝐼𝐶𝑤/𝑜 𝑖𝑛𝑡𝑒𝑟 consis-

tently get a worse performance, which means removing each of

the contrastive loss leads to a performance decrease. This fact

demonstrates the importance of exploiting interactive contrastive

learning to improve user/item representation learning. Besides, it

reveals that these two contrastive losses complement each other

and improve the performance in different aspects.

• Removing Non-local graph significantly degrades the model per-

formance, and𝐾𝐺𝐼𝐶𝑤/𝑜 𝑁𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 is the least competitive model.

It makes sense since𝐾𝐺𝐼𝐶𝑤/𝑜 𝑁𝑜𝑛−𝑙𝑜𝑐𝑎𝑙 only considers the intra-

graph contrastive loss in local graphs, which also verifies the

importance of both intra- and inter-graph contrastive learning.

• In most cases, all of the three variants surpass the baseline mod-

els across the three datasets, which further demonstrates the

effectiveness of intra- and inter-graph contrastive learning.

5.4 Sensitivity Analysis (RQ3)

5.4.1 Impact of model depth. The model depth 𝐿 represents the

aggregation layer in the local/non-local graph, and also represents

the layers of positive pairs in the interactive contrastive mechanism.
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Model
Book-Crossing MovieLens-1M Last.FM

AUC F1 AUC F1 AUC F1

BPRMF 0.6583(−11.66%) 0.6117(−6.95%) 0.8920(−3.32%) 0.7921(−6.38%) 0.7563(−10.29%) 0.7010(−7.43%)
CKE 0.6759(−9.90%) 0.6235(−5.77%) 0.9065(−1.87%) 0.8024(−5.35%) 0.7471(−11.21%) 0.6740(−10.13%)

RippleNet 0.7211(−5.38%) 0.6472(−3.40%) 0.9190(−0.62%) 0.8422(−1.37%) 0.7762(−8.30%) 0.7025(−7.28%)
PER 0.6048(−17.01%) 0.5726(−10.86%) 0.7124(−21.28%) 0.6670(−18.89%) 0.6414(−21.78%) 0.6033(−17.20%)
KGCN 0.6841(−9.08%) 0.6313(−4.99%) 0.9090(−1.62%) 0.8366(−1.93%) 0.8027(−5.65%) 0.7086(−6.67%)

KGNN-LS 0.6762(−9.87%) 0.6314(−4.98%) 0.9140(−1.12%) 0.8410(−1.49%) 0.8052(−5.40%) 0.7224(−5.29%)
KGAT 0.7314(−4.35%) 0.6544(−2.68%) 0.9140(−1.12%) 0.8440(−1.19%) 0.8293(−2.99%) 0.7424(−3.29%)
CKAN 0.7420(−3.29%) 0.6671(−1.41%) 0.9082(−1.70%) 0.8410(−1.49%) 0.8418(−1.74%) 0.7592(−1.61%)
KGIN 0.7273(−4.76%) 0.6614(−1.98%) 0.9190(−0.62%) 0.8441(−1.18%) 0.8486(−1.06%) 0.7602(−1.51%)

CG-KGR 0.7498(−2.51%) 0.6689(−1.23%) 0.9110(−1.42%) 0.8359(−2.00%) 0.8336(−2.56%) 0.7433(−3.20%)
KGIC 0.7749* 0.6812* 0.9252* 0.8559* 0.8592* 0.7753*

Table 2: The result of 𝐴𝑈𝐶 and 𝐹1 in CTR prediction. The best results are in boldface and the second best results are underlined.

* denotes statistically significant improvement by unpaired two-sample 𝑡-test with 𝑝 < 0.001.

(a) Book-Crossing (b) MovieLens-1M (c) Last.FM

Figure 3: The result of Recall@𝐾 in top-𝐾 recommendation.

Figure 4: Effect of ablation study.

To study the influence of model depth, we vary 𝐿 in range of {1, 2, 3}

and demonstrate the performance comparison on book, movie, and

music datasets in Table 3. KGIC performs best when 𝐿 = 1, 2, 2, on
Book, Movie, andMusic respectively.We could observe that: (1) One

or two layers are the proper distance for aggregating neighboring

information in the local/non-local graph, further stacking more

layers only introduces more noise. (2) One or two layers’ positive

pairs are enough for learning discriminative embeddings while

performing interactions between layers of CF and KG.

5.4.2 Impact of intra-graph contrastive loss weight 𝛼 . In the overall

contrastive loss defined in Equation (14), the trade-off parameter

𝛼 can balance the influence of intra- and inter-graph contrastive

Book Movie Music

Auc F1 Auc F1 Auc F1

𝐿=1 0.7749 0.6812 0.9241 0.8551 0.8482 0.7692

𝐿=2 0.7689 0.6705 0.9252 0.8559 0.8592 0.7753

𝐿=3 0.7513 0.6718 0.9203 0.8521 0.8511 0.7694

Table 3: Impact of model depth.

losses. To analyze the influence of coefficient 𝛼 , we vary 𝛼 in {0.1,

0.5, 1, 1.5, 2,} and report the results in Figure 5. From the results we

could observe that: an appropriate 𝛼 can effectively improve the

2824



Improving Knowledge-aware Recommendation with Multi-level Interactive Contrastive Learning CIKM ’22, October 17–21, 2022, Atlanta, GA, USA.

(a) Book (b) Movie (c) Music

Figure 5: Impact of coefficient 𝛼 .

(a) Book (b) Music

Figure 6: Impact of temperature 𝜏

performance of contrastive learning. Specifically, the model per-

forms best when 𝛼 = 1, which means there exists equal importance

between the intra- and inter-graph contrastive learning. In addition,

with different 𝛼 , the performance of our KGIC is consistently better

than other baselines, which also confirms the effectiveness of our

multi-level interactive contrastive learning mechanism.

5.4.3 Impact of Temperature 𝜏 . As mentioned in previous con-

trastive learning work [45, 54], the temperature 𝜏 defined in Equa-

tion (8) and Equation (10) plays an important role in contrastive

learning. To investigate the impact of 𝜏 , we vary it in range of

{0.05, 0.075, 0.1, 0.2, 0.3, 0.4}. From the results shown in Figure 6, we

can find that: a too large value of 𝜏 will cause poor performance,

consistent with conclusions of previous works [45]. And generally,

a temperature in the range of [0.1, 0.2] could lead to a satisfactory

recommendation performance.

5.5 Visualization (RQ4)

Towards a more intuitive evaluation on how the proposed inter-

active contrastive mechanism affects the representation learning

performance, we visualize the learned item embeddings in Figure 7.

Following previous Contrastive learning work [20, 47], we plot item

embeddings distributions with Gaussian kernel density estimation

(KDE) [3] in two-dimensional space (where the darker the color is,

the more points fall in that area), and we also plot KDE on angles

(i.e., 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑥) for each point (𝑥,𝑦) in the above graph) towards

a clearer presentation. As shown in Figure 7, we compare the visu-

alized results of KGIC, KGIC𝑤/𝑜 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 , CG-KGR, and CKAN on

book and music, from which we have the following observations:

• CG-KGR and CKAN show highly clustered features that mainly

reside on some narrow arcs, while our KGIC clearly has a more

uniform distribution and hence is able to present more different

node feature information. As mentioned in previous work [37],

in a proper range, a more uniform distribution means a better

(a) Book

(b) Music

Figure 7: Visualization for the distribution of item embed-

dings.

capacity to model the diversity of node features. This fact demon-

strates the superiority of KGIC in better representation learning

and alleviating the representation degeneration problem.

• By removing all of the contrastive loss in KGIC, the learned item

embeddings are less uniform and fall into several coherent clus-

ters. This phenomenon confirms the promotion of representation

learning comes from the proposed interactive contrastive mech-

anism, for preserving maximal information on representations

and improving the uniformity of the learned representations.

6 CONCLUSION

In this paper, we focus on incorporating contrastive learning into

KG-aware recommendation, making sufficient and coherent use

of CF and KG in a self-supervised manner. We propose a novel

framework, KGIC, which achieves better user/item representation

learning from two dimensions: (1) KGIC makes coherent utiliza-

tion of CF and KG information in each local/non-local graph, by

performing intra-graph interactive contrastive learning which con-

trasts layers of the CF and KG parts. (2) KGIC sufficiently extracts

and integrates more KG facts for user/item representation learning,

by constructing non-local graphs and performing inter-graph inter-

active contrastive learning which contrasts the local and non-local

graphs. Extensive experiments on three public datasets demonstrate

that KGIC significantly improves the recommendation performance

over baselines on both Click-Through rate prediction and Top-K

recommendation tasks.
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